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JUSTIFICATION OF THE DYNAMIC METHOD OF
STUDYING ELASTIC SYSTEMS

Ya. S. Podstrigachl, D. A. Baydak and
L. M. Zoriy

Questions of the basis for the dynamic method, which plays a basic role in /1049*

the study of the vibrations and stability of deformable systems, have funda-

mental value for the general theory and its applications. However, for systems

with distributed parameters, such questions are in the initial stage of

development [1-4].

The approach deyv.elo.ped here to justify the dynamic method is applicable

to elastic systems, investigation of whose perturbations leads to a mixed

problem of the form /

2'[U(x, 1) ]+g(z)[[u10tl+2c aul/t+au]=F(u, dui3z, ... , "u/dl'),

U,,[u(x, t)], .=O, U,,[aU(x, t) ],.,=, i, 2,..., n; )

u(z, O)=p(z), Bu(z, )/at-A(z), O~z<,,

where is a linear differential expression of the 2nthorder with respect

to the variable x; u(x, t) is . displacement of the system being considered;
• L.L-n-fg:.i;e certaln

the function g(x) > 0; the cofisti-rts a and c are non-negative;_ F is a certain no"rlin-

ear function such that F = 0 when u O; Uio and Uil are linear forms with respect to

u, ux,..., ux2n -t; and (x) and p(x) are any assigned functions. The

coefficients of the differential expression and of the linear forms in problem

(1) are dependent on the variable x and the parameters of the loads applied

to the system.

The perturbations u(x, t) are assumed to belong to a set, U, of ein
of f~unions

functions which are continuous with respect to a set of arguments/continuously

differentiableup to the order 2n inclusively with respect to x and up to the

second order with respect to te [0, T], and which satisfy the boundary condi-

tions of problem (1), with the norm

1Academician of the Academy of Sciences of the Ukrainian SSR.
*Numbers in the margin indicate pagination in the foreign text.
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Definition. A null solution of problem (1) is called stable if, for all

values of E1' £2 > 0, there exist corresponding values of 61, 62 > 0, such that

I IujL < '1, and I ILu/tlj < E2 when t > 0, if d0'l < 61 and I I <I l<S~ If

then this solution is stable, and, in addition, I u - 0,

Ilau/atll - 0 when t -, , then it is called asymptotic stability.

Later on, the linear problem corresponding to (1) ineijn values determines:

2'[u(z)]-o'2 g(z)g (x) =o,

Ut,[y(z)]..=O, Uj,[y(x)],:.-O, iL-t, 2,..., n. (2)

In the general case it proves to be a non-self-adjoit._ e multiparametric problem./1050

Further, for the sake of simplicity, it is considered that its real values

depend on a single load parameter, p. Obviously, when p = 0 they are positive;

we shall consider them simple. Then there exists a h-faiff-interval of variation,

I = [0, p*), in the parameter p such that2

O<:,'(p)<0.: (p)< ... <€ ( .... PEL

The sequences of -qigen toi functions {ym(x)} 1 and {zn(x)} x  of
to it x - n x 1

problem 2 and the; conjugate/ as is known, form a bi-orthogonal system of

functions with a weight g(x), 0 < x < 1; and each of these sequences individually
2

is a. R iis base in the space L (0, 1) [5].
g and

We assume that the nonlinearityFY!- the initial functions p(x) and i(x)

satisfy the conditions
IJa-F,ll<G(1) l '

+* vu,, tiileU,

where F1 and F2 are its values when u = ul and u = u2, respectively; and G(t) is

any continuous positive function, whose characteristic index y* < c; a < 0 is a cer-

tain constant.

The functions 9(x) and (x) are eXpa'del according to the real functions

of problem (2) into regularly converging series; the coefficients of these

expansions belong to -- compact set in the space , ; the series
~~~ --- m

2The value p* of the loading parameter corresponds to ar Eulerian, or self--.

vibrational, form of stability loss.
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Then the following theorems are valid.

Theorem 1. When p I or p = p* + v (v > 0, a rather small number), and

0 < t < T, there is a unique solution of problem (1), u(x, t) 6U, which can be

represented in the form of the series:

u(z,t)= z.(t)y.(x),

wherein -~he Ls-ima-e, of a, lower, a i-a • upper bound occurs

mlull'< IEl<Mil

where m and M are constants which do not depend on u.

Theorem 2. If p < p* and c < 0, then the null solution of problem (1) is

asymptotically stable.

Theorem 3. If p = p* + v, then the null solution of problem (1) is

unstable.

Proof of the existence and uniqueness of the solution to the problem con-

- sidered is cvAe~dil by reducing it to an equivalent problem for a denunfrabLkel 1

system of integral equations obtainable on the basis of the above-noted properties

of the eEg, functions, with subsequent use of the contractive mappings principle.

Theorems 2 (and 3) about (in)stability are proved to a first approximation by

applying the direct Lyapunov method to the appropriate dedumd blevr system of

differential equations.

We note that this approach to justifying the dynamic method is being /1051

extended to more complex problems for deformable systems with distributed

parameters.

L 'vov Branch of the Mathematics Faculty,
Institute of Mathematics,
Academy of Sciences UkSSR Received July 9, 1973
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